

 Navigation

 	
 index

 	hexagonit.virtualgallery 1.0.0.1 documentation

Virtual 3D gallery for Plone

hexagonit.virtualgallery is a Plone add-on that renders a Flash-based 3D virtual gallery.

	Source code @ GitHub [http://github.com/hexagonit/hexagonit.virtualgallery]

	Releases @ PyPI [http://pypi.python.org/pypi/hexagonit.virtualgallery]

	Sphinx docs @ ReadTheDocs [http://readthedocs.org/docs/hexagonitvirtualgallery]

Installation

To install hexagonit.virtualgallery you simply add
hexagonit.virtualgallery to the list of eggs in your buildout, run
buildout and restart Plone. Then, install hexagonit.virtualgallery using the
Add-ons control panel.

Requirements

	Plone [http://plone.org/] 4.1 or newer

	Flash player [http://get.adobe.com/flashplayer/] 10.2 or newer

Basic usage

This package adds the Virtual 3D gallery display mode to Folder and
Collection. So, go to any folder or collection that contains images and select
Virtual 3D gallery from the display drop-down menu.

In the gallery each room has enough space for 17 images. If the image source
(Folder or Collection) contains more images then additional rooms will be
automatically created and doors allow the user to travel between the rooms.

The gallery can be navigated either by using the mouse or the keyboard. Use
the arrow keys to move within the space (hold down shift to strafe). Clicking
an image with the mouse will concentrate on that image and the image metadata
will become visible when hovering over the image.

You can view each image in turn by clicking on the arrow buttons on the left
and right side of the viewer. The viewer can also be put in fullscreen mode
by clicking on the fullscreen button on the top right corner.

[image: https://github.com/hexagonit/hexagonit.virtualgallery/raw/master/hexagonit/virtualgallery/docs/images/screenshot.png]

Configuration

Each gallery may be configured to use a particular image scale (provided by
plone.app.imaging [http://pypi.python.org/pypi/plone.app.imaging]) by
choosing the appropriate scale on the Virtual gallery settings page. A
link to the settings page will become visible when the context is using the
virtual gallery display.

By default the gallery uses the original scale of the images but in case of
large images this may slow down the gallery significantly. Using a smaller
scale version of the images usually improves the loading time and performance.

You can also configure new image scales in Site setup › Image handling.
For example, you could define a “HD” scale at 1200x1200 pixels which would
give most current day users a good quality image even in the fullscreen mode.

Advanced usage

The Flash viewer is independent of Plone and may be used in any web context,
even another framework or a language environment. The viewer requires two
distinct parts to work:

	The HTML code to embed the viewer and pass parameters

	JSON configuration which configures the viewer.

Embed code

The HTML code needs to embed the Virtual3DGallery.swf viewer and pass a
single flashvars [http://kb2.adobe.com/cps/164/tn_16417.html] variable
called dataURL to the viewer. This variable must contain the URL to the
JSON configuration file which configures the viewer.

If you are embedding the viewer within a page that contains other content it
is also recommended set the wmode=window flash parameter so that HTML
elements can be positioned above the flash content.

By default, this package uses the SWFObject [http://code.google.com/p/swfobject/] Javascript library to do the
embedding.

JSON configuration

The Flash viewer is driven by the JSON configuration which contains the list
of images to display in the gallery, associated image metadata (title, author,
description) and translations for the UI textual elements, e.g.:

{"images": [
 {"url": "http://my.server.com/images/image1.png",
 "title": "Nice scenery",
 "description": "Lorem lipsum..",
 "author": "dokai"},
 {"url": "http://my.server.com/images/image2.png",
 "title": "Screenshot of Foo",
 "description": "Lorem lipsum..",
 "author": "dokai"}
],
 "ui": {
 "enterRoomToolTip": "Click to enter",
 "fullscreen": "Fullscreen",
 "loadingImg": "Loading image:",
 "enterRoom": "Entering room [x] of [y]",
 "anaglyph": "Anaglyph"
 },
 "settings": {
 "anaglyphModeEnabled": "false"
 }}

The viewer does not care where the images and associated metadata come from so
you can implement any custom logic that puts together the list (custom catalog
queries, structural hierarchies, etc) as long as the resulting JSON document
is valid.

The package contains an associated JSON schema [http://tools.ietf.org/html/draft-zyp-json-schema-03] document which can be used to validate the JSON
configuration, e.g.:

from hexagonit.virtualgallery.schema import GALLERY_DATA_SCHEMA
from validictory import validate
import json

try:
 # Assuming the `my_custom_config` contains the Python
 # data structure with the image information.
 validate(my_custom_config, GALLERY_DATA_SCHEMA)
 json_config = json.dumps(my_custom_config)
except ValueError:
 # Validation failed, do something.
 pass

You might want to display the gallery somewhere else or possibly in a
toolbarless new window. To keep all Plone stuff away from the virtual gallery
use a URL like below to only get the title of the gallery and the Flash object
that displays it:

http://<path>/<to>/<your>/<gallery>/<folder>/virtualgallery?ajax_load=1&ajax_include_head=1

TODO

	cross-browser testing

	use in the wild

Credits

	Idea, skeleton and sponsoring provided by Hexagon IT Oy.

	Flash part of the gallery developed by Michal Zwieruho, BlackMoon Design.

	Plone integration by Nejc Zupan, NiteoWeb Ltd.

Changelog

1.0.0.1 (2012-11-20)

	Release for Plone-4.2.2. [taito]

1.0 (2011-08-26)

	Added support for configuring the image scale used in the gallery
on per-context basis.
[dokai]

	Updated documentation
[dokai]

	Updated Finnish translations.
[dokai]

	Support for translations added.
[zupo]

	Fixed the Flash window mode so that Plone dropdown menus are visible
on top of the Flash movie.
[dokai]

	Updated the Flash movie to a new version. Highlights:

	No more empty frames on walls.

	The default position when entering a room shows the middle box
with the room number better.

	Redundant tooltips (prev, next, forward, backward, etc) removed.

	Traversal through doors using mouse clicks.

	Repositioned the prev/next and fullscreen buttons.

	Fixed a bug with image info popups being sticky in fullscreen mode.

	Fixed a bug with empty galleries.

	Fixed a bug with tooltips not expanding correctly over different
sized text.

	Fixed a bug where in some cases clicking on an image would zoom-in
on a wrong one.

	Traversing through doors is possible with a single click.

Removed also the now redundant entries in the JSON configuration.

[dokai]

1.0b4 (2011-08-10)

	Really fix the packaging error. The setuptools unpack_tarfile function
filters out symlinks when unpacking so they will not be present in the
unpacked package. This, combined with some weirdness in either tar
itself or the Python tar module which reverses the order of the link,
caused the targets of the symlinks to be removed from the final unpacked
package.
[dokai]

1.0b3 (2011-08-10)

	Fixed packaging error in 1.0b2.
[dokai]

	JSON schema validation.
[zupo]

1.0b2 (2011-08-04)

	Code cleanups.
[zupo]

	More comments and documentation.
[zupo]

	More tests.
[zupo]

1.0b1 (2011-08-04)

	Initial release.
[zupo]

License

Copyright (c) 2011, Hexagon IT Oy
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

	Neither the name of Hexagon IT Oy nor the names of its contributors may
be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL HEXAGON IT OY BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Translations

Rebuild POT:

$ i18ndude rebuild-pot --pot locales/hexagonit.virtualgallery.pot --merge locales/manual.pot --create hexagonit.virtualgallery .

Sync a translation file with POT:

$ find locales -name '*.po' -exec i18ndude sync --pot locales/hexagonit.virtualgallery.pot {} \;

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2011, Hexagon IT.
 Last updated on 04.12.2014 06:04.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	hexagonit.virtualgallery 1.0.0.1 documentation

Index

 Copyright 2011, Hexagon IT.
 Last updated on 04.12.2014 06:04.
 Created using Sphinx 1.2.2.

 HISTORY.html

 Navigation

 		
 index

 		hexagonit.virtualgallery 1.0.0.1 documentation »

Changelog

1.0.0.1 (2012-11-20)

		Release for Plone-4.2.2. [taito]

1.0 (2011-08-26)

		Added support for configuring the image scale used in the gallery
on per-context basis.
[dokai]

		Updated documentation
[dokai]

		Updated Finnish translations.
[dokai]

		Support for translations added.
[zupo]

		Fixed the Flash window mode so that Plone dropdown menus are visible
on top of the Flash movie.
[dokai]

		Updated the Flash movie to a new version. Highlights:

		No more empty frames on walls.

		The default position when entering a room shows the middle box
with the room number better.

		Redundant tooltips (prev, next, forward, backward, etc) removed.

		Traversal through doors using mouse clicks.

		Repositioned the prev/next and fullscreen buttons.

		Fixed a bug with image info popups being sticky in fullscreen mode.

		Fixed a bug with empty galleries.

		Fixed a bug with tooltips not expanding correctly over different
sized text.

		Fixed a bug where in some cases clicking on an image would zoom-in
on a wrong one.

		Traversing through doors is possible with a single click.

Removed also the now redundant entries in the JSON configuration.

[dokai]

1.0b4 (2011-08-10)

		Really fix the packaging error. The setuptools unpack_tarfile function
filters out symlinks when unpacking so they will not be present in the
unpacked package. This, combined with some weirdness in either tar
itself or the Python tar module which reverses the order of the link,
caused the targets of the symlinks to be removed from the final unpacked
package.
[dokai]

1.0b3 (2011-08-10)

		Fixed packaging error in 1.0b2.
[dokai]

		JSON schema validation.
[zupo]

1.0b2 (2011-08-04)

		Code cleanups.
[zupo]

		More comments and documentation.
[zupo]

		More tests.
[zupo]

1.0b1 (2011-08-04)

		Initial release.
[zupo]

 © Copyright 2011, Hexagon IT.
 Last updated on 04.12.2014 06:04.
 Created using Sphinx 1.2.2.

_static/down-pressed.png

_static/comment.png

search.html

 Navigation

 		
 index

 		hexagonit.virtualgallery 1.0.0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011, Hexagon IT.
 Last updated on 04.12.2014 06:04.
 Created using Sphinx 1.2.2.

README.html

 Navigation

 		
 index

 		hexagonit.virtualgallery 1.0.0.1 documentation »

Virtual 3D gallery for Plone

hexagonit.virtualgallery is a Plone add-on that renders a Flash-based 3D virtual gallery.

		Source code @ GitHub [http://github.com/hexagonit/hexagonit.virtualgallery]

		Releases @ PyPI [http://pypi.python.org/pypi/hexagonit.virtualgallery]

		Sphinx docs @ ReadTheDocs [http://readthedocs.org/docs/hexagonitvirtualgallery]

Installation

To install hexagonit.virtualgallery you simply add
hexagonit.virtualgallery to the list of eggs in your buildout, run
buildout and restart Plone. Then, install hexagonit.virtualgallery using the
Add-ons control panel.

Requirements

		Plone [http://plone.org/] 4.1 or newer

		Flash player [http://get.adobe.com/flashplayer/] 10.2 or newer

Basic usage

This package adds the Virtual 3D gallery display mode to Folder and
Collection. So, go to any folder or collection that contains images and select
Virtual 3D gallery from the display drop-down menu.

In the gallery each room has enough space for 17 images. If the image source
(Folder or Collection) contains more images then additional rooms will be
automatically created and doors allow the user to travel between the rooms.

The gallery can be navigated either by using the mouse or the keyboard. Use
the arrow keys to move within the space (hold down shift to strafe). Clicking
an image with the mouse will concentrate on that image and the image metadata
will become visible when hovering over the image.

You can view each image in turn by clicking on the arrow buttons on the left
and right side of the viewer. The viewer can also be put in fullscreen mode
by clicking on the fullscreen button on the top right corner.

[image: https://github.com/hexagonit/hexagonit.virtualgallery/raw/master/hexagonit/virtualgallery/docs/images/screenshot.png]

Configuration

Each gallery may be configured to use a particular image scale (provided by
plone.app.imaging [http://pypi.python.org/pypi/plone.app.imaging]) by
choosing the appropriate scale on the Virtual gallery settings page. A
link to the settings page will become visible when the context is using the
virtual gallery display.

By default the gallery uses the original scale of the images but in case of
large images this may slow down the gallery significantly. Using a smaller
scale version of the images usually improves the loading time and performance.

You can also configure new image scales in Site setup › Image handling.
For example, you could define a “HD” scale at 1200x1200 pixels which would
give most current day users a good quality image even in the fullscreen mode.

Advanced usage

The Flash viewer is independent of Plone and may be used in any web context,
even another framework or a language environment. The viewer requires two
distinct parts to work:

		The HTML code to embed the viewer and pass parameters

		JSON configuration which configures the viewer.

Embed code

The HTML code needs to embed the Virtual3DGallery.swf viewer and pass a
single flashvars [http://kb2.adobe.com/cps/164/tn_16417.html] variable
called dataURL to the viewer. This variable must contain the URL to the
JSON configuration file which configures the viewer.

If you are embedding the viewer within a page that contains other content it
is also recommended set the wmode=window flash parameter so that HTML
elements can be positioned above the flash content.

By default, this package uses the SWFObject [http://code.google.com/p/swfobject/] Javascript library to do the
embedding.

JSON configuration

The Flash viewer is driven by the JSON configuration which contains the list
of images to display in the gallery, associated image metadata (title, author,
description) and translations for the UI textual elements, e.g.:

{"images": [
 {"url": "http://my.server.com/images/image1.png",
 "title": "Nice scenery",
 "description": "Lorem lipsum..",
 "author": "dokai"},
 {"url": "http://my.server.com/images/image2.png",
 "title": "Screenshot of Foo",
 "description": "Lorem lipsum..",
 "author": "dokai"}
],
 "ui": {
 "enterRoomToolTip": "Click to enter",
 "fullscreen": "Fullscreen",
 "loadingImg": "Loading image:",
 "enterRoom": "Entering room [x] of [y]",
 "anaglyph": "Anaglyph"
 },
 "settings": {
 "anaglyphModeEnabled": "false"
 }}

The viewer does not care where the images and associated metadata come from so
you can implement any custom logic that puts together the list (custom catalog
queries, structural hierarchies, etc) as long as the resulting JSON document
is valid.

The package contains an associated JSON schema [http://tools.ietf.org/html/draft-zyp-json-schema-03] document which can be used to validate the JSON
configuration, e.g.:

from hexagonit.virtualgallery.schema import GALLERY_DATA_SCHEMA
from validictory import validate
import json

try:
 # Assuming the `my_custom_config` contains the Python
 # data structure with the image information.
 validate(my_custom_config, GALLERY_DATA_SCHEMA)
 json_config = json.dumps(my_custom_config)
except ValueError:
 # Validation failed, do something.
 pass

You might want to display the gallery somewhere else or possibly in a
toolbarless new window. To keep all Plone stuff away from the virtual gallery
use a URL like below to only get the title of the gallery and the Flash object
that displays it:

http://<path>/<to>/<your>/<gallery>/<folder>/virtualgallery?ajax_load=1&ajax_include_head=1

 © Copyright 2011, Hexagon IT.
 Last updated on 04.12.2014 06:04.
 Created using Sphinx 1.2.2.

_static/down.png

LICENSE.html

 Navigation

 		
 index

 		hexagonit.virtualgallery 1.0.0.1 documentation »

License

Copyright (c) 2011, Hexagon IT Oy
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

		Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

		Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

		Neither the name of Hexagon IT Oy nor the names of its contributors may
be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL HEXAGON IT OY BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 © Copyright 2011, Hexagon IT.
 Last updated on 04.12.2014 06:04.
 Created using Sphinx 1.2.2.

_static/minus.png

_static/ajax-loader.gif

_static/plus.png

_static/comment-bright.png

_static/comment-close.png

_static/up.png

_static/file.png

_static/up-pressed.png

CREDITS.html

 Navigation

 		
 index

 		hexagonit.virtualgallery 1.0.0.1 documentation »

Credits

		Idea, skeleton and sponsoring provided by Hexagon IT Oy.

		Flash part of the gallery developed by Michal Zwieruho, BlackMoon Design.

		Plone integration by Nejc Zupan, NiteoWeb Ltd.

 © Copyright 2011, Hexagon IT.
 Last updated on 04.12.2014 06:04.
 Created using Sphinx 1.2.2.

FUTURE.html

 Navigation

 		
 index

 		hexagonit.virtualgallery 1.0.0.1 documentation »

TODO

		cross-browser testing

		use in the wild

 © Copyright 2011, Hexagon IT.
 Last updated on 04.12.2014 06:04.
 Created using Sphinx 1.2.2.

